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Well-resolved large-eddy simulations (LES) are performed in order to investigate
flow phenomena and turbulence structure of the boundary layer along a supersonic
compression ramp. The numerical simulations directly reproduce an available
experimental result. The compression ramp has a deflection angle of β =25◦. The mean
free-stream Mach number is M∞ = 2.95. The Reynolds number based on the incoming
boundary-layer thickness is Reδ0

= 63 560 in accordance with the reference experiment.
These simulations overcome deficiencies of earlier direct numerical simulations (DNS)
and LES in terms of ramp-deflection angle, Reynolds number and spanwise size of the
computational domain which is required for capturing the essential flow phenomena.
The filtered conservation equations for mass, momentum and energy are solved
with a high-order finite-difference scheme. The effect of subgrid scales is modelled
by the approximate deconvolution model. About 18.5 × 106 grid points are used
for discretizing the computational domain. To obtain mean flow and turbulence
structure the flow is sampled 1272 times over 703 characteristic time scales of the
incoming boundary layer. Statistical data are computed from these samples. An
analysis of the data shows good agreement with the experiment in terms of mean
quantities such as shock position, separation and reattachment location, skin-friction
and surface-pressure distributions, and turbulence structure. The computational data
confirm theoretical and experimental results on fluctuation amplification across the
interaction region. In the wake of the main shock a shedding of shocklets is
observed. The temporal behaviour of the coupled shock–separation system agrees well
with experimental data. Unlike previous DNS the present simulation data provide
indications of a large-scale shock motion. Also, evidence for the existence of three-
dimensional large-scale streamwise structures, commonly referred to as Görtler-like
vortices, is found.

1. Introduction
For supersonic flows the interaction of turbulent boundary layers with shocks and

rarefaction waves is one of the most prevalent phenomena governing the overall
flow structure. A striking example for the significance of a proper engineering
prediction of shock-wave/turbulent-boundary-layer interaction (SWTBLI) is provided
by the side-load phenomenon in rocket nozzles (e.g. Hagemann, Frey & Koschel
2002) which is responsible for numerous, even recent, design failures. Research on
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SWTBLI commonly employs a range of canonical flow configurations with increasing
complexity. Among the canonical configurations considered are impinging normal
shocks, oblique-shock reflections, compression ramps and one and two fins mounted
on a flat plate. For a detailed survey of the current knowledge on SWTBLI, mainly
drawn from experiments, refer to Delery & Marvin (1986), Settles & Dolling (1990),
Smits & Dussauge (1996), Zheltovodov (1996), Andreopoulos, Agui & Briassulis
(2000) and Dolling (2001). As pointed out by Dolling (1998, 2001) and confirmed by
more recent comprehensive analyses (Knight et al. 2003) the numerical prediction of
SWTBLI by statistical turbulence modelling is still unsatisfactory. For situations with
shock-induced flow separation computational results employing Reynolds-averaged
turbulence modelling exhibit a large scatter of predicted separation lengths for various
geometrical configurations. Although numerous computations based on the Reynolds-
averaged Navier–Stokes equations (RANS) have been performed, currently only weak
and moderate interactions, characterized by low supersonic Mach number or small
flow deflection angles, can be predicted by RANS computations without specific
a posteriori adjustment of turbulence models. For strong interactions, the results of
RANS computations generally show a significant disagreement with experimental data
in terms of surface pressure, skin friction, and heat transfer distributions. Furthermore,
these approaches turn out to be unable to predict the unsteadiness of the shock system,
which is, however, a very important feature of SWTBLI. Comprehensive summaries
of the current status of computational fluid dynamics (CFD) for the prediction of
SWTBLI are given by Zheltovodov et al. (1992), Zheltovodov (1996), and Knight &
Degrez (1998).

A main deficiency of RANS approaches is that for unsteady flows, statistical
turbulence modelling can be expected to reproduce the proper temporal mean-flow
behaviour only if mean-flow time scales and fluctuation time scales are separated so
that standard assumptions involved in turbulence modeling can be applied. This is not
the case for SWTBLI. Alternatives to RANS are the large-eddy-simulation (LES) and
direct numerical simulations (DNS) approaches. DNS recovers the entire temporal
and spatial flow information. Since all relevant flow scales need to be resolved DNS
is limited essentially by the available computer power. In practice, only rather small
Reynolds numbers and narrow computational domains can be considered. The range
of flow parameters where most experimental data are available cannot be reached.
Spatial and temporal resolution requirements can be lowered by employing LES at
the expense of modelling the effect of discarded scales. For LES, evolution equations
for the low-pass filtered solution are solved. The instantaneous interaction of these
so-called resolved scales with the remainder range of scales needs to be modelled.
For a comprehensive account of current LES refer to the textbook of Sagaut (2002).
Nevertheless, LES maintains the main advantages of DNS, namely providing the full
spatial and temporal flow information down to the smallest resolved scales. Based
on recent advances in modeling and computing, LES nowadays can be considered as
the most appropriate numerical tool for the analysis of complex unsteady transitional
and turbulent flows. However, as pointed out by Knight et al. (2003) and Zheltovodov
(2004), even LES predictions need to be interpreted with care. For this reason in this
paper a direct comparison between an available experiment and an LES employing
the approximate deconvolution model Stolz, Adams & Kleiser (2001a) is performed.

Engine inlets as well as some other elements of supersonic planes often have
successive forward- and backward-facing ramps, so that generic compression–
decompression and decompression–compression ramps configurations are also
investigated. Seminal contributions on compression-corner flows have been made
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Figure 1. Important flow phenomena in compression ramp flows (for explanations see text).

by Settles, Fitzpatrick & Bogdonoff (1979), Dolling & Murphy (1983), and Smits &
Muck (1987). A compilation of a large range of available experimental data is
provided by Settles & Dodson (1994). Most of the current insight and knowledge
about compression-ramp flows is drawn from experimental work, and we will
not repeating the above reviews here. Essential flow phenomena for compression–
decompression ramps are sketched in figure 1, following Zheltovodov (1991). The
undisturbed incoming turbulent boundary layer is deflected at the compression
corner. The resulting compression shock penetrates the boundary layer where the
penetration depth depends on the local Reynolds number Adamson & Messiter
(1980). For sufficiently large deflection angles the rapid compression within the
boundary layer results in a region of mean-flow separation near the compression
corner. The separation region is contained by a detached shear layer which reattaches
at the deflected part of the compression ramp. A λ-shock system is generated near
the separation region. The forward foot of the λ-shock originates from the region
of flow separation, and the rearward foot from the region of flow reattachment.
Further downstream, the reattached boundary layer reaches the decompression ramp
and passes through the Prandtl–Meyer expansion. Even further downstream, the
boundary layer relaxes again towards a developed zero-pressure-gradient boundary
layer.

In figure 1 separation and reattachment lines are indicated by S and R, respectively.
Turbulence is amplified by interaction with a rapid compression within the boundary
layer (inset 1) and by direct interaction with the shock in the external flow, inset 2.
Note also that the shock foots spread out towards the wall due to reduced local
Mach number and to turbulent diffusion. Inset 3 points to the damping of turbulent
fluctuation by the interaction with the expansion wave at the expansion corner. After
reattachment at the deflected part of the compression ramp a turbulent boundary
layer is re-established, inset 4. Experimental results support the existence of pairs of
large counter-rotating streamwise vortices in the reattachment region as well as in
the reverse flow of the separation zone, inset 5. Within the area of flow separation
the reverse mean flow has the character of a wall jet which exhibits indications of
relaminarization, inset 6.
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Zheltovodov (2004) and Knight et al. (2003) provide extensive comparisons of
RANS and LES, applied to supersonic compression ramps. Probably the first attempt
at an LES for compression-ramp flow was made by Hunt & Nixon (1995), who qualify
their simulation as a very large-eddy simulation. The results show some agreement
with the experiment of Dolling & Murphy (1983), e.g. in terms of the shock-motion
frequency. For a weak interaction at a free-stream Mach number of M ∞ = 3 and a
ramp deflection angle of β = 8◦ no mean-flow separation was found in the LES of
Urbin, Knight & Zheltovodov (1999), Kannepalli, Arunajatesan & Dash (2002), and
El-Askary, Schröder & Meinke (2003), although instantaneous reverse flow regions
may exist. A thin separation zone was observed in the DNS of Adams (2000) at
M ∞ = 3, β = 18◦. No large-scale shock motion (LSSM) was found. The observed
small-scale shock motion has a dominant frequency which is close to the inverse
characteristic time scale of bursting events within the incoming boundary layer. An
instantaneous Schlieren-type visualization exhibits compression waves shed by the
main compression shock above the separated shear layer and downstream of the
interaction. These DNS results were confirmed by the LES of Stolz et al. (2001a)
where the approximate deconvolution model (ADM) was employed for subgrid-scale
(SGS) modelling.

The same free-stream flow parameters as in Adams (2000) were considered by
Rizzetta, Visbal & Gaitonde (2001) and El-Askary et al. (2003). Computations without
an SGS model agreed with LES with a Smagorinsky model and with a dynamic model
at the same resolution, indicating that the effect of the employed SGS model was
negligible. No agreement was found with the results of Adams (2000) in terms of
skin-friction and surface-pressure distributions in the interaction area. Aside from
the modelling issues, the main reason for this disagreement is that the incoming
boundary layers were different. A case with a strong interaction was studied by
Urbin et al. (2000), Yan et al. (2000) and Yan, Knight & Zheltovodov (2001) at
M ∞ = 3 and β = 25◦. A range of deflection angles β = 8◦, 16◦, 20◦, 24◦, corresponding
to experiments of Smits & Muck (1987), Dolling & Murphy (1983) and data of
Settles & Dodson (1991), was investigated by Rizzetta & Visbal (2002). The latter
case of β = 24◦ was also considered by Kannepalli et al. (2002). However, for all these
computations the momentum-thickness Reynolds number of the incoming boundary
layer was about one to two orders of magnitude smaller than for the experiments.
For none of these computations was a developed pressure plateau near the corner
observed, a result which is typical for low Reynolds numbers. Also the separation
length was not reproduced correctly. No LSSM was found and the temporal evolution
of the shock-separation system, in terms of the surface-pressure intermittency, exhibits
quantitative differences from the experiments. Recently Wu et al. (2005a), Wu, Taylor
& Martin (2005b) and Wu & Martin (2006) presented preliminary results for a
DNS of a 24◦-compression corner at a free-stream Mach number M = 2.9 and
an incoming-boundary-layer momentum-thickness Reynolds number of Reθ = 2900,
corroborating the above findings. So far there is to our knowledge no successful direct
comparison with a compression-ramp experiment.

For some simulations the separation length agrees with experiment although the
experimental Reynolds number is much larger. This contradicts the dependence of
the separation length on Reynolds number as reported by Knight et al. (2003). Most
of the currently available analysis is restricted to spanwise-averaged flow data and
a detailed investigation of the flow structure is not available. An open question is
the existence of large-scale streamwise structures in the reattaching flow and their
origin. Experimental oil-flow patterns of Zheltovodov, Schülein & Yakovlev (1983)
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and Lüdeke, Radespiel & Schülein (2004) suggest the presence of pairwise counter-
rotating vortices in the reverse flow of the separation zone and near reattachment.
For a laminar interaction Comte & David (1996) found Görtler-like vortices for an
LES of the boundary layer along a generic body–flap configuration at Reδ0

≈ 840,
where δ0 is the incoming boundary-layer thickness. It was shown that these vortices
have a strong effect on local skin friction and heat transfer.

The objective of the numerical investigation presented in this paper is a direct
comparison with an available experiment, along with a detailed investigation of the
instantaneous and the averaged flow structure. For this purpose all flow parameters
and the flow geometry are matched to an available experiment of Zheltovodov et al.
(1983) and Zheltovodov & Yakovlev (1986). The experimental data are available
in tabulated form and described in detail by Zheltovodov et al. (1990). Additional
experiments providing surface skin friction measurements are available for the same
geometry (Borisov et al. 1993). The free-stream Mach number is M ∞ = 2.95, the
Reynolds number based on the incoming boundary-layer thickness is Reδ0

= 63560,
and the ramp deflection angle is β = 25◦. In the following we refer to the experiment at
such conditions as the ‘reference experiment’. Additional experimental data at M = 2.9
and Reδ0

= 144000 for the same geometry will be used and referred to as ‘higher-
Reynolds-number experiment’. By matching directly the experimental parameters,
the prediction quality of the SGS model employed can be assessed without further
assumptions. Preliminary results based on the analysis of limited statistical data were
considered by Loginov, Adams & Zheltovodov (2004a, b). In this report the entire set
of data is used. Given a successful validation, the computational results will provide
a reliable source for further analysis. Whereas the reference experiment is on an
compression–decompression ramp configuration, in this paper only the compression
ramp is considered and compared with the experiment. The reason for splitting the
problem into two parts is twofold. First, the estimated computational cost of well-
resolved LES for the full configuration is large for completing the computations in
reasonable time. Second, the compression-corner interaction is sufficiently complex
to justify a separate investigation. The subsequent downstream interaction of the
reattached boundary layer with the Prandtl–Meyer expansion is the subject of an
ongoing study.

In § 2 we provide the problem formulation and give a brief summary of the
simulation method, which is essentially the same as in Stolz et al. (2001a). A precursor
simulation for the turbulent boundary layer along a flat plate was used to provide
inflow data for the compression ramp. Results for this precursor simulation are
summarized in § 3. The main subject of this paper is the analysis of the compression-
corner flow in § 4. The last section, § 5, gives a summary and final conclusions.

2. Problem formulation and simulation method
A generalized-coordinate formulation of the compressible Navier–Stokes equations

(NSE) in conservation form is employed. The NSE are written in the Cartesian
(x1, x2, x3) physical space, using a transformation to computational space (ξ1, ξ2, ξ3)
as detailed by Adams (1998). The computational-space coordinates are orthogonal
and normalized, where ξ1 corresponds to the streamwise direction, ξ2 to the spanwise
direction and ξ3 to the wall-normal direction. Note that the lines ξ1 = const and
ξ3 = const are non-orthogonal in physical space, see figure 2. In this figure a side view
of the computational mesh is shown, where only every 10th mesh line is displayed.
For conciseness we use a tensor notation with summation convention. Since only
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Figure 2. Computational mesh (each 10th line is shown); for selected reference stations as
indicated by arrows refer to table 2 in § 4.

two-dimensional configurations in the (x1, x3)-plane are considered, the spanwise
direction x2 is orthogonal to the (x1, x3)-plane and ξ2 is mapped onto x2 linearly.
Symbols refer to certain stations along the compression ramp which will be explained
further in § 4.

The reference length throughout this paper is the mean boundary-layer thickness
of the experiment, δ∗

0 = 2.27 mm, at the first reference section E1. The boundary-layer
thickness is measured as the distance from the wall where 99 % of the mean free-
stream velocity U∞ = 614.6 ms−1 is reached. Here and in the following, dimensional
quantities are indicated by an asterisk. The integration domain has the extents L1 =
25.8, L2 = 4, L3 = 4 at inflow. The computational mesh consists of 701 × 132 × 201
points in the streamwise, spanwise, and wall-normal directions, respectively.
We assume the solution to be L2-periodic in x2. The spatial resolution of the simula-
tion is matched to that of Stolz et al. (2001a) in terms of wall units of the incoming
boundary layer, which was found to be sufficient to reproduce DNS results with
good accuracy. A perfect gas with a specific-heats ratio of γ = 1.4 is assumed and
the viscosity is calculated according to Sutherland’s law with a reference temperature
T ∗

∞ = 108 K. The non-dimensionalization is as follows:

ui = u∗
i /U ∗

∞, ρ = ρ∗/ρ∗
∞, T = T ∗/T ∗

∞, p = p∗/(ρ∗
∞U ∗

∞
2
), E = E∗/(ρ∗

∞U ∗
∞

2
).

Here, ui denotes the Cartesian velocity component in the xi-direction, ρ is the density,
p is the pressure and E = p/(γ − 1) + ρuiui/2 is the total energy. Reference data
are taken from the experiment as ρ∗

∞ =0.314 kg m−3 and T ∗
∞ = 108 K. The time t is

non-dimensionalized by the characteristic time scale of the mean incoming boundary
layer at the reference station E1, δ∗

0/U ∗
∞ = 3.69 µs.

The compressible Navier–Stokes equations in curvilinear coordinates are written as

∂
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J
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∂ξ2
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J
+

∂

∂ξ3

HS

J
, (2.1)

where the conservative variables are f = {ρ, ρu1, ρu2, ρu3, E}, and J is the
Jacobian of the mapping (x1, x2, x3) ↔ (ξ1, ξ2, ξ3). FE , GE , HE are the convective
fluxes and FS , GS , HS are the diffusive fluxes in the respective coordinate directions.
Further details can be found in Adams (1998).

For LES, equation (2.1) is filtered at the expense of the appearance of unclosed
SGS terms. The resulting equations are solved with respect to the filtered variables
f̄ = G ∗ f , where G is the filter kernel and ∗ denotes a convolution operation.
For closure, the approximate deconvolution model (ADM) of Stolz et al. (2001a) is
used. A detailed description of ADM can be found in that reference and in Stolz,
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Adams & Kleiser (2001b). Here we only summarize the most important facts. With
ADM a discrete filter G is explicitly applied along with its approximate inverse, the
deconvolution operator QN ≈ G−1. The operator QN is applied to the filtered variables
f̄ in order to approximate the unfiltered variables by f � = QN ∗ f̄ . A key feature of
ADM is that the flux terms in (2.1) are computed directly using the approximately
unfiltered fields f ≈ f � which are subsequently filtered explicitly with the discrete
filter G. To model the transfer of energy to scales which cannot be represented on
the computational mesh a relaxation term is added. No a priori estimates for model
parameters are needed. Inverse relaxation times for density, momentum and energy
are determined dynamically. The equations solved have the following form:

∂

∂t

f

J
+ G ∗ ∂

∂ξ1

FE

J
+ G ∗ ∂

∂ξ2

GE

J
+ G ∗ ∂

∂ξ3

HE

J

= G ∗ ∂

∂ξ1

FS

J
+ G ∗ ∂

∂ξ2

GS

J
+ G ∗ ∂

∂ξ3

HS

J
− χ(I − QN ∗ G) ∗ f, (2.2)

where all fluxes are computed with the approximately deconvolved solution f ∗ = QN ∗
f . The relaxation parameter χ is estimated dynamically Stolz et al. (2001a). For
simplicity we will omit the overbar on filtered quantities in the following, implying
that all variables are filtered variables if not mentioned otherwise.

For numerical integration, equation (2.2) is discretized on the mesh described above.
A sixth-order compact finite-difference scheme of Lele (1992) is used for discretizing
all spatial derivatives at the interior mesh points. A scheme of fourth-order accuracy
is used at the first point off the domain boundary, and a one-sided scheme with third-
order accuracy is used at the boundary. Time advancement is done with an explicit
low-storage third-order Runge–Kutta scheme (Williamson 1980). The time-step size is
determined dynamically by a CFL condition (CFL = 0.5). For the compression-corner
computation the time-step size typically assumes values of about 1 × 10−3δ0/U∞. It
is well known that linear central finite-difference discretizations are generally not
suitable for capturing shocks. However, Stolz et al. (2001a) have demonstrated that
for finite Reynolds number ADM is able to reproduce the filtered-shock solution
without local coupling to shock-capturing schemes. It should be emphasized that the
exact filtered shock solution, where the high-wavenumber part of the spectrum has
been removed, is slightly oscillatory owing to the Gibbs phenomenon. During the
simulations it can occur that at isolated instances small flow regions are marginally
resolved. In these cases, the deconvolution applied to the filtered temperature which
is required for computing the energy transport term overamplifies numerical errors
and can result in negative deconvolved temperatures. Note that ADM is designed to
amplify non-resolved scales before the computation of the nonlinear transport. In such
cases the deconvolved temperature is substituted by the filtered temperature in the
neighbourhood of where the event occurred. This approach is known as Landweber
projection in regularized-deconvolution procedures when a priori bounds on the
deconvolved solution are possible (Bertero & Boccacci 1998). During our simulations
these events occurred rarely (about once per 2000 time steps at a few random points
near mean-flow separation) so that an adverse effect on the results can be excluded.

Boundary data are imposed as follows. At inflow we prescribe all variables f in time,
using data from a separate boundary-layer computation, see § 3. Periodic boundary
conditions were applied in the spanwise direction. At the outflow, a sponge-layer
technique is used (Adams 1998). At the upper truncation plane of the computational
domain non-reflecting conditions combined with a sponge layer are imposed. The
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Figure 3. Streamwise distribution of the wall temperature: , smoothed and interpolated
values; � , experimental data (Zheltovodov et al. 1990); , rescaled to Tw of the
reference experiment.

wall is assumed to be isothermal and no-slip conditions are enforced on the velocity.
The wall-temperature distribution is uniform in the spanwise direction; along the
streamwise direction it is taken from the experiment of Zheltovodov et al. (1990). The
data from the experiment were rescaled by the wall temperature of the undisturbed
boundary layer, smoothed and interpolated onto the computational grid, as shown in
figure 3. Isothermal wall boundary conditions are preferable to adiabatic conditions
since for the experiment an almost constant temperature distribution in time was
observed during the measurements.

3. Flat-plate boundary-layer simulation results
A well-known problem in the simulation of turbulent boundary layers is that

realistic inflow data are needed. We follow here the approach of Adams (2000)
where a separate boundary-layer computation was performed from which a time
series of data was sampled. This time series was made periodic in time and fed
into the compression-ramp DNS. Also, the experimental boundary-layer parameters
at reference station E1 need to be matched. This is accomplished by the rescaling
and recycling technique of Lund, Wu & Squires (1998), formulated for compressible
flow by Stolz & Adams (2003). Otherwise the numerical discretization and SGS
model are the same as for the compression-ramp computation. For the flat plate the
computational domain is rectangular with a streamwise extent of L1 = 16 and the
same extents in the spanwise and wall-normal directions as for the compression-corner
case at inflow. The mesh consists of 201 × 132 × 101 grid points. As initial data an
instantaneous solution was taken from the previous flat-plate simulations of Stolz &
Adams (2003) and rescaled to match the required Mach number and domain size.

Once a statistically stationary state had been reached after an initial transient, the
simulation was continued for 55.4δ0/U∞ characteristic time scales. For all conservative
variables (density, momentum and total energy) 400 samples were taken at evenly
spaced consecutive time increments roughly spaced by 0.14δ0/U∞ at the downstream
position x1 = 11, where inflow transients of the flat-plate simulation have decayed.
Subsequently, data were interpolated by sixth-order splines in the wall-normal
direction to the finer grid which is used for the compression-corner simulation.
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δ0 δ1 δ2 Reδ2
Cf × 103 H12

Experiment 1 0.35 0.066 1826 1.79 5.3
Computation 1.04 0.38 0.074 2046 2.05 5.19
Difference 4% 8.6% 12.1 % 12.1% 14.5 % 2%

Table 1. Summary of mean-flow parameters for the flat-plate boundary layer simulation.
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Figure 4. Skin-friction coefficient dependence on Reynolds number Reδ2
: +, current LES;

×, reference experiment; �, Mabey et al. CAT7402 (M ∞ = 3); �, Mabey et al. CAT7402
(M ∞ = 2.8); �, Maier CAT7003 (M ∞ = 2.9); �, Stalmach CAT5802 (M ∞ = 2.75); �, Laderman
& Demetriades CAT7702 (M ∞ = 3) , prediction by von Kárman–Schönherr skin-friction
law with van-Driest-II transformation. Data from Fernholz & Finley (1977, 1981).

To allow for a longer time advancement of the ramp computation than the sampling-
time period of the inflow data these data are repeated periodically in time. The
inflow-data sampling interval Tsamp was chosen in such a way that a strong scale
separation TSSSM � Tsamp � TLSSM between the characteristic time scales of sampling
Tsamp =55.4δ0/U∞, small-scale shock motion TSSSM ∼ O(δ0/U∞), and large-scale shock
motion TLSSM ∼ O(702δ0/U∞) was satisfied. This also could have been accomplished
by requiring Tsamp 
 TLSSM . In this case, however, the inflow-data computation would
have been computationally as expensive as the compression-ramp simulation itself.

Note that although the inflow data are statistically homogeneous in the spanwise
direction and in time by construction, a small inhomogeneity can be found in the
computed averages. For an interested reader the inflow data arrays are available from
the authors upon request.

Mean-flow characteristics for the reference section E1 are summarized and
compared with the experiment in table 1: δ1 and δ2 are displacement and momentum
thickness, respectively; Reδ2

is the Reynolds number based on free-stream velocity,
momentum thickness and viscosity at the wall; H12 is the shape factor. The agreement
of δ0, δ1, δ2, H12 with the experiment is good. The computed skin-friction coefficient
Cf differs more significantly from the experimental value. However, the discrepancy
is within the limits of experimental-data scatter, as shown in figure 4. In this figure
several experimental data sets Cf versus Reδ2

, taken from Fernholz & Finley (1977,
1981), are shown along with our computed values and the experimental reference



144 M. S. Loginov, N. A. Adams and A. A. Zheltovodov

0.5 1.0 1.5 2.0 2.5 3.00

0.5

1.0

1.5

2.0

x3

�M�, �T�, �U�, �ρ�

Figure 5. Wall-normal distributions of the mean flow for the incoming flow at station E1:
, current LES; �, Mach number; �, temperature; �, velocity; �, density. Symbols denote

data from the reference experiment.
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Figure 6. The van-Driest transformed mean-velocity profiles for the incoming flow at station
E1. �, reference experiment; , present LES; , linear and log-law ln x+

3 /0.4 + 5.1;
�, reference experiment with corrected Cf .

values at station E1. An empirical fit of the experimental data is shown by the dashed
line, using a von Kárman–Schönherr incompressible skin-friction formula, extended to
the compressible case by the van-Driest-II transformation (Hopkins & Inouye 1971).
Note that the smaller the Reynolds number the larger the experimental-data scatter,
indicating the increasing difficulty in obtaining a developed turbulent boundary layer.

The wall-normal distribution of mean Mach number, temperature, velocity, and
density are compared with the experimental data in figure 5. In the bulk, the computed
velocity profile agrees well with the experimental data, and minor discrepancies
can be observed for the density and temperature profiles. These differences are
well within the experimental error margin. The computed van-Driest-transformed
velocity profiles, shown in figure 6, agree well with the logarithmic law of the wall
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Figure 7. Profiles of (a) the density-weighted Reynolds-normal stress and (b) the density-
weighted Reynolds-shear stress in wall units at station E1: , present LES; +, Reθ = 670;
×, Reθ = 1410. Symbols denote DNS data of Spalart (1988b).

U+
V D = ln x+

3 /0.4 + 5.1. The velocity UV D is computed as defined by Bradshaw (1977)
and scaled by the wall-friction velocity uτ =

√
τw/ρw . The wall-normal coordinate in

wall units is x+
3 = uτx3/νw . In wall units the experimental data, shown as open circles,

differ more significantly from the law of the wall. A better agreement with the law of
the wall is obtained if the experimental UV D is scaled with uτ of the simulation (open
squares).

With respect to inner variables the density-weighted Reynolds-normal-stress and
Reynolds-shear-stress profiles should agree with incompressible data in the near-wall
region (Smits & Dussauge 1996). This is the case for our simulation data in the region
x+

3 < 20 as shown in figure 7 by a comparison with incompressible DNS of Spalart
(1988a).

4. Compression-corner flow
For the analysis of the compression-corner flow we will refer to selected downstream

stations as indicated in figure 2. The positions of these stations in terms of the
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Symbol x1 Comment

E1 −15.4 experimental reference section 1
I −6.1 incipient interaction
S −4.5 mean-flow separation
P −1.5 pressure plateau position
R 2.5 mean-flow reattachment
E2 4.4 experimental reference section 2

Table 2. Selected downstream stations.

Parameter Value Comment

β 25◦

M ∞ 2.95
Reδ0

63560
Reδ1

22120
Reθ 4705 using ν∞
Reδ2

2045 using νw

δ1 0.37 at section E1
θ 0.071 at section E1
N1 701
N2 132
N3 201
L1 25.8 along the wall
L2 4
L3 ≈ 4
�+

x1
16 to 34

�+
x2

17.8 at section E1
�+

x3
1.1 first point off the wall at section E1

Table 3. Simulation parameters.

downstream coordinate x1, along with their particular significance, are summarized in
table 2. An overview of all relevant flow parameters is given in table 3. Additionally,
the number of grid points Ni is specified for each coordinate direction i = 1, 2, 3. The
extent of the computational domain in the streamwise direction is L1, in the spanwise
direction L2, and in the wall-normal direction at inflow L3. Measured in wall units
of the incoming boundary layer the grid size in the respective coordinate directions
is given as �+

xi
, where for the wall-normal direction this refers to the distance of the

first grid point off the wall.
The ramp computation was started from synthetic initial data generated by an

inviscid flow field superimposed with a laminar flat-plate boundary layer. After
an initial transient the compression-corner simulation was continued for 703.45
characteristic time scales of the incoming boundary layer δ0/U∞. This corresponds to
about 27 flow-through times of the free stream through the computational domain
and is about twice as long as for the earlier DNS of Adams (2000). Owing to the
larger sampling time, smoother statistical data have been obtained, and also at least
one period of low-frequency large-scale shock motion (LSSM) could be captured (see
§ 4.2). During this time interval the flow field was sampled 1272 times for statistical
analysis. Various statistical quantities and time-history data have been saved. This
calculation required about 18000 CPU hours on 4–6 CPU running in parallel on
vector-parallel platforms NEC SX-5 and SX-6.
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Figure 8. Mean density gradient ‖∇ρ‖ averaged in spanwise direction (for legend see text).

In the following we present data along certain computational-grid lines ξ1 = const,
as indicated in figure 2. The relevant positions are marked with letters which
we refer to in the following. The velocity is represented by its contravariant

components, uc
1 = (u1∂ξ1/∂x1 + u3∂ξ1/∂x3)/

√
(∂ξ1/∂x1)2 + (∂ξ1/∂x3)2, uc

2 = u2, and

uc
3 = (u1∂ξ3/∂x1 + u3∂ξ3/∂x3)/

√
(∂ξ3/∂x1)2 + (∂ξ3/∂x3)2. The computational grid is

constructed in such a way that the difference between contravariant components and
longitudinal components, where the velocity is rotated into a Cartesian system aligned
with the wall, is small. The contravariant projection, however, removes the ambiguity
of the longitudinal projection near the corner. We distinguish between Favre, i.e.
density-weighted, statistical averages and Reynolds averages. The former is indi-
cated by a double prime f ′′ = f − 〈ρf 〉/〈ρ〉, the latter by a single prime f ′ = f − 〈f 〉.

4.1. Mean flow

For a general impression of the flow a Schlieren-imitation (density-gradient
magnitude) of the mean flow in the interaction region is shown in figure 8. A
corresponding Schlieren photograph of the reference experiment would require an
exposure of about 2.6ms. Note that the flow near the outflow boundary is affected
by the sponge outflow treatment where artifacts can be seen, which are, however, not
relevant for our analysis. The computed flow recovers the main flow features that were
described in § 1. The ramp deflection angle of β = 25◦ at M∞ = 2.95 is large enough
for the incoming boundary layer (1 on figure 8) to separate. Where the large near-wall
density gradient of the incoming boundary layer detaches from the wall the separation
region (3) begins. A detached shear layer (4) contains the reverse flow region (3). Since
the Reynolds number is comparatively large, the forward shock (2) penetrates rather
deeply into the boundary layer. Near the wall increased turbulent diffusion and finite
mean streamline curvature cause the shock foot to spread out so that it is hardly visible
in the Schlieren image. LSSM and spanwise shock deformation give rise to apparent
additional shock images around the main compression shock. The rear compression
shock (5) appears as a converging set of compression waves originating from the
reattachment region. Instantaneous data will show, however, that the rearward shock
is in fact created by highly unsteady compression waves and shocklets.

Another important finding can be obtained from figure 9. The computational-
domain boundaries are indicated by thin black lines; crossflow-planes are coloured
with respect to local mean temperature. A translucent isosurface of mean pressure
〈p〉 = 0.1 represents the mean forward shock. Despite the fact that the flow geometry
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Figure 9. Three-dimensional mean flow. Colours denote temperature.
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is nominally two-dimensional, the interaction breaks the spanwise translational
symmetry. The temperature distribution in a cross-flow plane after the interaction
clearly shows a spanwise variation, unlike a cross-flow plane before the interaction. A
rake of 10 coloured mean streamlines identifies the recirculating flow in the separation
region. Furthermore, a non-planar motion in the separation zone and a rotational
motion after reattachment are evident.

Two pairs of counter-rotating streamwise vortices can be identified in the reattaching
shear layer from isosurfaces of contravariant streamwise vorticity. Since the circulation
of these vortices is rather small which makes them hard to extract from background
noise, the streamwise mean vorticity was additionally filtered by a top-hat filter on
the computational mesh for the purpose of visualization. Positive rotation is indicated
by the colour ‘cyan’ and negative rotation by ‘magenta’.

These streamwise vortices affect turbulence structure and the properties of the mean
flow significantly (Inger 1977; Brazhko 1979; Zheltovodov et al. 1983; Zheltovodov &
Yakovlev 1986; Floryan 1991; Lüdeke et al. 2004). This is evident if we consider the
computational analogue of an experimental oil-flow image in figure 10, where we show
the distribution of the mean skin-friction coefficient. Solid lines represent the contour
Cf = 0, the left-most line representing separation, the right-most reattachment; the
darker colour corresponds to the lower value of the the skin friction. For reference,
the corner is indicated by a dashed line. It is evident that although the separation
line is more or less two-dimensional without significant variations in the spanwise
direction, the reattachment line clearly exhibits two pairs of flow convergence and
divergence lines. The position of the convergence lines is approximately x2 ≈ δ0 and
x2 ≈ 3δ0, and the position of the divergence lines approximately x2 ≈ 2δ0 and x2 ≈ 4δ0.
The convergence lines can be attributed to cross-flow uplift and the divergence
lines to cross-flow downwash, so that they represent footprints of two-pairs of
counter-rotating streamwise vortices. Consistently with experimental observations
(e.g. Floryan 1991) we find that the spanwise width of each vortex pair is about 2δ0.
A surface oil-flow visualization obtained in the experiments of Zheltovodov et al.
(1983) and Zheltovodov & Yakovlev (1986) exhibits similar features; for the higher-
Reynolds-number experiment a photo of oil-flow vizualization is shown in figure 11.
The characteristic pattern can be associated with a system of steady streamwise
vortices. Again the vertical dashed line indicates the position of the ramp corner. The
accumulation of oil downstream shows the typical mean-flow reattachment topology
in the presence of streamwise vortices (Zheltovodov et al. 1983; Lüdeke et al. 2004).
Clearly visible are convergence and divergence lines in the reattaching flow, also
penetrating upstream into the separation zone, pairs of convergence and divergence
lines being spaced by approximately 2δ0. It should be noted that the computational
domain size of 4δ0 with periodic boundary conditions applied in spanwise direction
allows flow structures with spanwise periodicity of at most 4δ0 to be captured. We
therefore cannot exclude the existence of vortical structures with larger spanwise
periodicity. Such structures, however, have not been observed experimentally.

The question arises about the origin of these streamwise vortices. A stability analysis
of the turbulent mean flow is beyond the scope of this paper, even if the question
of whether such a kind of analysis is valid for turbulent flows is put aside. Görtler
vortices arise from an instability of a laminar boundary layer with sufficiently concave
streamwise curvature. If the mean streamline curvature in the separation region or
in the reattachment region is larger than the critical value for laminar flow a similar
mechanism for generating streamwise vortices may be active in the turbulent flow as
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Figure 10. Distribution of the mean skin-friction coefficient:
, Cf = 0; , corner position.

Figure 11. Oil-flow visualization pattern from higher-Reynolds-number experiment; the
thick dashed vertical line indicates the corner position.

well. The Görtler number for a turbulent boundary layer can be estimated as

GT =
θ

0.018δ1

√
θ

R

(Smits & Dussauge 1996, p. 277), where R is the curvature radius of the mean-flow
streamlines within the boundary layer close to the corner, θ is the momentum thickness
and δ1 the displacement thickness. Near the separation region all streamlines within
the boundary layer have GT > 1 which is well above the critical value of about 0.6 for
laminar flows (Görtler 1954). GT is slightly smaller in the reattachment region but still
near the critical value. Another criterion for the significance of streamline curvature
is given by the curvature parameter δ0/R which was used for the investigation of
subsonic turbulent flows (Floryan 1991). From our simulation we find δ0/R > 0.1



LES of shock-wave/turbulent-boundary-layer interaction 151

near the separation line and δ0/R � 0.03 near reattachment. Again these values are
much larger than the critical value δ/R =0.01, for which Floryan (1991) found the
first appearance of streamwise vortices. These two indicators, Görtler number and
curvature parameter, point to a Görtler-like mechanism being responsible for the
observed streamwise vortices.

For a statistically two-dimensional turbulent flow there is no reason why the
observed streamwise vortices should remain steady at a fixed spanwise position.
Steady or very low-frequency spanwise variations within the incoming boundary layer
or model imperfections can result in fixing the spanwise location of the vortices, as was
observed by Lüdeke et al. (2004) and pointed out by Floryan (1991). Owing to limited
statistical sampling the incoming boundary layer is not perfectly two-dimensional in
the means. It contains steady disturbances over a range of spanwise wavenumbers
with an amplitude of at most 0.03U∞. It was found that there is no dominant spanwise
wavelength at the inflow (the spectral distribution is broadband), and no correlation
with reattachment region was observed. These steady disturbances can act as a seed
similarly to experimental-model imperfections and probably determine the Görtler-
like vortex locations. It should be emphasized that the spanwise wavenumber of the
Görtler-like vortices (and thus their size) is determined by their generating mechanism
and not by the seed.

The spanwise variation of the mean skin-friction coefficient at the reference stations
E1, I, S, P, R, and E2 is shown in figure 12. Whereas Cf varies at station E1 in the
undisturbed boundary layer by a magnitude of approximately ±0.24 × 10−3, this
variation increases to about ±0.69 × 10−3 at station E2 after reattachment. It is
obvious that the spanwise variation of the mean flow should be taken into account
when comparing computational data with the experiment since experimental data
usually are collected only at a single section x2 = const (usually the model centreline).

To assess the agreement of our computation with the experiment we compare
skin-friction coefficient and surface pressure in figure 13. The mean skin-friction
measurements were performed by the global interferometry skin friction technique
(GISF) which has an estimated accuracy estimated of 6–10 % (Borisov et al. 1993,
1999). Several partially overlapping datasets were generated near the model centreline
between convergence–divergence-line pairs, but the exact position, with respect to
these is unknown. The computational data averaged in time and in the spanwise
direction (thick solid line) are in very good agreement with the experimental data
(circles), figure 13(a). Deviations of experimental data from computed spanwise-
averaged values are between minx2

Cf and maxx2
Cf denoted by dotted lines.

We recall that in the computation the decompression corner is not considered.
Instead, the deflected part of the compression ramp is longer than for the reference
experiment and a sponge zone is added at the outflow of the computational domain.
Therefore, no agreement of computational and experimental data can be expected
near the decompression corner and beyond. The mean-flow separation is located
at x1S = −4.5 ± 0.25δ0 and mean-flow reattachment occurs at x1R = 2.5 ± 0.7δ0. The
separation length Lsep can be estimated as 7δ0.

A less strong spanwise variation is observed for the surface pressure, shown in
figure 13(b) normalized by the surface pressure of the incoming boundary layer at
reference station E1. The surface pressure exhibits a plateau with an inflection point
P as indicated in the figure. Again, a very good agreement between computational
and experimental results is found. Here, we can also verify that differences between
computation and experiment near the decompression corner are due to the mentioned
differences in the length of the deflected part of the ramp and to the sponge zone.
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Figure 12. Distribution of the mean skin-friction coefficient at the wall in the spanwise
direction: , averaged in time; , averaged in time and over the spanwise direction.

With open squares we also show in figure 13(b) surface-pressure data from the
higher-Reynolds-number experiment with a longer deflected surface. First, we note
that in the range considered the Reynolds number has a negligible effect on the
surface pressure. Second, it can be seen that the computational data indeed follow
the additional experimental data before they are affected by the outflow sponge zone.
From comparison with experimental data the sponge zone invalidates a layer with a
length of about δ0 upstream of outflow.

For an analytic prediction of the separation location in shock–boundary-layer
interaction, the free-interaction theory for large Reynolds numbers is frequently
invoked (Chapman, Kuehn & Larson 1957). A result of this theory is an empirical
formula for the surface pressure across the interaction region (Erdos & Pallone 1962)

F (s) = (p(s) − pI )

√√√√
√

M 2
∞ − 1

2Cf I

,

where p(s) and pI are the wall pressure normalized by the dynamic pressure q =
1
2
ρ∞U 2

∞, as a function of the normalized streamwise coordinate

s =
x − xI

xS − xI

.
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Figure 13. Averaged (a) skin-friction coefficient and (b) wall-pressure distributions in the
streamwise direction: �, reference experiment; , present LES averaged in time and
over the spanwise direction; , present LES averaged in time, min and max values over
the spanwise direction; �, higher-Reynolds-number experiment; , free interaction theory.
The left-most dashed vertical line indicates the compression-corner position, the middle dashed
vertical line the decompression corner of the experiment and the right-most dashed vertical
line the beginning of the sponge-zone at the outflow of the computational domain. Although
beyond the scope of the current paper, experimental data downstream of the expansion corner
are provided for illustration.

The index I indicates that data are to be taken from the incoming undisturbed
boundary layer just before the interaction. Although the free interaction theory
predicts a steeper pressure rise and an earlier separation than is observed for
experiment and LES, the predicted pressure-plateau value agrees with both.
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Figure 14. Velocity profiles at several downstream positions.

Section x1

1 −8.05
2 −2.93
3 −1.95
4 −1.22
5 1.22
6 2.68
7 3.05
8 4.15
9 5.73

Table 4. Additional streamwise stations.

Figure 14 gives an impression of the mean flow evolution. The computational data
are shown by thick solid and dotted lines, having the same meaning as in figure 13.
The black dots correspond to sections E1 and E2 of the reference experiment,
and open circles indicate higher-Reynolds-number experimental data at sections 1–9;
their streamwise positions are detailed in table 4. The incoming undisturbed turbulent
boundary-layer profile in section 1 transforms into a profile with weak reverse flow
slightly downstream of the separation point (section 2). Further downstream the
reverse flow becomes stronger (sections 3–5). At section 6 the boundary layer is
reattached while still showing a momentum deficit in the wake. This re-established
attached boundary layer develops towards an undisturbed profile further downstream.
The experimental profiles exhibit only a weak dependence on the Reynolds number
in the range considered (only at sections 1 and 8 are data from both experiments
available). Taking into account the spanwise variation of the computed mean velocity,
experimental and numerical data generally agree well. Excessive negative experimental
velocity data at section 5 can be explained by difficulties in measuring the reverse
flow; also, near the line of the zero velocity accuracy and reliability of experimental
data are reduced. Differences inside the boundary layer at section 2 (x3 <δ0) and
in the outer flow at section 8 (x3 >δ0) may be attributed to difficulties with Pitot
probes in the highly unsteady regions as pointed out by Dolling (1998). A Pitot
probe overestimates data in these regions. Also, the accuracy of the static pressure
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measurements is very limited near unsteady shock waves and near separation and
reattachment regions.

4.2. Shock wave structure

An impression of the instantaneous shock-wave structure can be obtained from a
computed Schlieren-type visualization in figure 15. This is similar to figure 8; the
flow snapshot is taken at a time instant, however, and corresponds roughly to an
experimental spark shadowgraph. The numbers 1–5 refer to the same events as shown
in figure 8. The spanwise variation of the shock position causes some smearing of
the shock position in the interaction region after averaging in the spanwise direction.
Clearly visible are compression waves (5) above the separated shear layer (4) and
the rearward stem of the λ-shock which originates from the reattachment region.
Also, the general shape of the forward shock appears to have changed slightly. A
similar observation can be made for experimental visualizations at two different time
instants for the higher-Reynolds-number experiment (Zheltovodov et al. 1983), shown
in figures 15(c) and 15(d ). An animation of a time-series of shock visualizations for
our computation is available as a supplement to the online version of the paper
which clearly shows the unsteady motion of the shock system and the shedding of
compression waves behind the forward shock. We find in our simulations small-scale
shock motion, as reported by Andreopoulos & Muck (1987) and Adams (2000),
along with LSSM, as reported by Dolling & Murphy (1983). We also observe that the
rearward shock is highly unsteady and becomes invisible at irregular time intervals.
The compression waves, indicated as 5 in figure 15, travel downstream with a speed
of about 0.1U∞ to 0.4U∞.

It is found that waves travelling at the larger speed are shocklets. Their speed is of
the same order of magnitude as the convection velocity of the largest eddies in the
detached shear layer (4) so that the ambient-flow speed is supersonic relative to these
eddies. For verification of the shocklet character of the stronger compression waves,
we have confirmed that the change of the flow state across the shocklets satisfies
the Rankine-Hugoniot conditions (Lee, Lele & Moin 1991) relative to the ambient
flow behind the separation shock. The shocklet Mach number, defined as the ratio of
ambient-flow velocity with respect to the shocklet and sound speed, varies between
1.23 and 2.2. The stronger shocklets with larger Mach number have lower absolute
velocity and belong to the unsteady second stem of the λ-shock.

We believe that the presence of travelling compression waves and shocklets in the
wake of the compression shock explains the high level of turbulent fluctuations in the
external flow between the separation shock and the detached shear layer which was
shown earlier in experiments by hot-wire measurements (Zheltovodov & Yakovlev
1986). The observed phenomenon provides evidence for an additional mechanism
which enhances the level of turbulent fluctuations in this flow region along with
direct interaction of shocks and turbulence (Andreopoulos et al. 2000; Anyiwo &
Bushnell 1982). By the method of diagrams of Kovasznay (1953) it was shown by
Zheltovodov & Yakovlev (1986) that the acoustic mode is prevalent in this region,
which is consistent with the existence of weak shocklets.

For an analysis of shock motion Dolling & Or (1985) recorded the time evolution
of wall-pressure signals to identify the shock-foot location. A direct comparison is
possible if we apply a similar analysis to our computational data. Time-histories of
wall pressure normalized by the mean value at station I are shown in figure 16 at six
different downstream positions. Sensors were placed at the centreline of the domain,
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Figure 15. Schlieren-type vizualisation at two time instants: (a, b) simulation, computed as density gradient ‖∇ρ‖ averaged in the spanwise
direction; (c, d) higher Reynolds number experiment. Computational and experimental time instants are not related to each other. For a
description of points 1–5 see figure 8.
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Figure 16. Wall pressure history and probability distributions at six different wall positions,
(a) at I within the incoming boundary layer, (b) near the beginning of the interaction region,
(c) near the location of maximum pressure fluctuations (refer to figure 17), (d) at P inside the
separation region, (e) at R near reattachment, (f ) at E2 downstream of reattachment. The
time increment for the time-sequence sampling is about 0.1δ0/U∞.

their streamwise positions corresponding to:
(a) within the undisturbed boundary layer at station I,
(b) near the beginning of the interaction where mean pressure starts to rise above

the value in the incoming boundary layer 〈p〉 = 1.1〈p〉I (see also figure 13b),
(c) maximum pressure fluctuation position (refer to figure 17),
(d) inside the separation region at station P (refer to figure 13),
(e) near the reattachment line at station R,
(f ) downstream of the separation at the experimental station E2.

The arrows and thick dashed lines indicate the respective time-averaged pressure
values. The insets in each figure show the normalized probability-density function
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(PDF) for the respective pressure signal. For reference a Gaussian PDF is also
indicated by a dashed curve. Evidently the PDF distribution is essentially Gaussian
within the incoming boundary layer, figure 16(a), and within the separation region,
figure 16(d ). The motion of the forward shock front manifests itself in the pressure
fluctuations by the appearance of a PDF peak at negative pressure values near the
onset of the interaction. The PDF also shows that the forward shock intermittently
crosses the sensor position, pre-shock pressure values being more likely to be found
than post-shock values. This finding agrees with the observations of Dolling &
Or (1985). The streamwise length of the forward-shock excursion can be estimated
as 1.3δ0. Further evidence of LSSM can be found at the next sensor position,
figure 16(c). Initially, the observed pressure is below its average value (the shock wave
is downstream of the sensor position). Subsequently, the shock moves upstream, and
pressure the increases beyond its average value at about 400δ0/U∞. At the end of
the observation time interval the pressure roughly recovers its initial value. Given a
limited observation time interval a LSSM time scale cannot be deduced quantitatively.
For this purpose, the simulation should cover several cycles of shock motion. Since
such a requirement would multiply computational cost by at least a factor of two this
is impractical for us.

We find a PDF with a single off-centre peak at the beginning of the interaction
and a double-peaked PDF within the interaction region. This reflects the highly
intermittent shock motion which has been observed in earlier experiments (Dolling &
Murphy 1983; Dolling & Or 1985).

Inside the separation zone, figure 16(d ) and further downstream, figure 16(e), the
PDF distributions resume a Gaussian shape. The qualitiative difference between
the pressure signal in the intermittent region near the beginning of the interaction,
figure 16(b), which is dominated by the separation shock motion, and the one near
reattachment, figure 16(e), which is affected by the unsteady rearward stem of the
λ-shock, suggests that the motion of the rearward stem is not related to the motion of
the forward stem. Whereas several studies (e.g. Andreopoulos & Muck 1987; Adams
2000) indicate that the small-scale shock motion is driven by turbulent bursting events
in the incoming boundary layer, there is currently no theory available which explains
LSSM (Dolling 1998, 2001). It should be mentioned that in our simulation we can
exclude that LSSM was driven by the periodically repeated inflow data since the time
scales of LSSM and data repetition differ by about one order of magnitude.

Dolling & Murphy (1983) found a characteristic shape of the standard-
deviation distribution of wall-pressure fluctuations across the interaction, figure 17(a).
Normalized by the local mean wall pressure our computational results agree
quantitatively with the experimental results of Dolling & Murphy (1983), although for
these results the Reynolds numbers are one to two orders of magnitude larger. Since
no Reynolds-number-independent scaling of the interaction-region extent is known,
σ (pw) at locations corresponding to respective interaction events, such as separation
location S, pressure-plateau location P and reattachment location R need to be
compared. A global maximum at more than 20 % of the local mean wall pressure
is observed for the LES in the separation region at x1 ≈ −4.5δ0 which corresponds
to the mean separation position S, figure 17(b). The maximum value agrees well
with the experimental data of Dolling & Murphy (1983) at larger Reynolds number.
Note that Dolling & Murphy (1983) find the peak location to be slightly upstream
of their measured separation point. The reason may be that the separation location
was identified visually from a kerosene-lampblack streak pattern, whereas for the
computation Cf = 0 could be identified directly. As discussed before, the observed
large variance of pressure fluctuations is a consequence of the shock-foot motion.
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Characteristic of the standard-deviation distribution is a second peak which can be
found near the reattachment position. Its value is about 9 % of the local mean wall
pressure for both computation and experiment.

4.3. Turbulence evolution

One of the most significant effects of shock–turbulence interaction is that turbulent
fluctuations increase and turbulent length scales decrease when passing through
sufficiently strong shocks. For a comprehensive summary of the current knowledge
refer to Andreopoulos et al. (2000). For the case considered here, the amplification of
turbulent fluctuations is evident from figure 18. Profiles of root-mean-square (RMS)

values of the mass-flux 〈(ρU )′2〉1/2, density 〈ρ ′2〉1/2, and velocity 〈U ′2〉1/2 fluctuations
(a–c) are shown at several downstream sections as given in table 4. All quantities
are normalized to the incoming free-stream quantities. The thick solid line denotes
the time- and spanwise-averaged value, and the spanwise variation is indicated by
dotted lines. Thin horizontal lines correspond to the location of zero mean velocity,
which bounds the reverse flow region. The outer maxima which can be observed in
sections 2–9 originate from unsteady shock motion as described in § 4.2. The maxima
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Figure 18. Downstream evolution of (a) mass-flux, (b) density and (c) velocity fluctuations.
Positions are detailed in table 4.

between x3 = 0.75δ0 and x3 = 1.25δ0 are located within the deattached shear layer.
The velocity fluctuations in the first section show the typical near-wall peak. Further
downstream this peak remains but its fluctuation level is smaller than that of the
detached shear layer. Whereas in the outer flow fluctuations are small at section 1,
they grow by interaction with the shock wave (sections 5–9, x3 ≈ 2.25) up to values
of larger than 0.1ρ∞ for the density and about 0.01U∞ for the velocity fluctuations.
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As mentioned before, aside from direct interaction with the shock wave, downstream
travelling shocklets contribute additionally to this increase.

We compare data from RMS fluctuations with the reference experiment at positions
E1 and E2 in figure 19. The measurement technique allowed only recording of
relative changes of the RMS values where data of the undisturbed boundary layer
serve as reference. We try to mimic the experimental procedure by normalizing our
computational data with the respective maxima in the first section E1. Fluctuations
of momentum and density are amplified by about a factor of 4 across the interaction,
which agrees well with previous observations (Smits & Muck 1987; Adams 2000). The
simulation shows larger amplifications than the experiment for all quantities near the
local maxima in 0.7δ0 <x3 < 1δ0 at position E2, and for the density fluctuations in
the external flow x3/δ0 > 1.5. Given that the measurement error is at best between 15 %
and 20 % the agreement between computational and experimental data nonetheless
can be considered as satisfactory. Near-wall maxima of the RMS distributions
are not captured by the experiment due to the lack of near-wall resolution. The
streamwise behaviour of the momentum-fluctuation-profile maxima compares well
with the reference experiment, figure 20.

The Reynolds normal stress τ11 = 〈ρuc
1

′′uc
1

′′〉, the Reynolds shear stress τ13 =
〈ρuc

1
′′uc

3
′′〉 and the structure parameter −τ13/τii are shown using their contravariant

repesentation in figures 21(a), 21(b) and 21(c), respectively. The Reynolds-normal-
stress maximum is located near the wall in the incoming flow, shifts to the detached
shear layer and diminishes at the last station. The amplification ratio of about 8 and
the quantitative evolution are in agreement with those reported by Smits & Muck
(1987) for a compression ramp with β = 25◦ at M ∞ = 2.79 and Reδ0 = 1 570 000. The
Reynolds-shear-stress maxima (figure 21b) are amplified by factor of about 28, which
is larger than that reported by Smits & Muck (1987). It was noted by Adams (2000)
that τ13 is very sensitive to the the experimental probe adjustment. The spanwise
variation reaches about ±50 % in the calculation, while it was claimed that three-
dimensional effects are small for experiments (Smits & Muck 1987).

Figure 21(a, b) indicates that Reynolds normal and shear stresses behave differently
so that the turbulence structure changes. Anisotropy can be measured by the structure
parameter, in figure 21(c). Its value of between 0.13 and 0.15 in the incoming boundary
layer agrees well with data reported by Adams (2000) and with incompressible
boundary layers (Smits & Dussauge 1996). Particularly large values can be observed
in the detached shear layer.

4.4. Development of the reverse flow

As already mentioned in § 1 the reverse flow exhibits indications of relaminarization
inside the separation zone. Zheltovodov (1979, 1996) found that a favourable pressure
gradient acting on the reverse flow between the reattachment and separation lines
and a decrease of the local Reynolds number can lead to a transformation of the
reverse-flow velocity profiles from a shape which is typical for turbulent near-wall jets
to a shape which is typical for laminar ones. RANS calculations for a 90◦ step with a
k −ω turbulence model also revealed indications of this kind of transformation and a
decrease of eddy viscosity in the revese flow ahead of a 90◦ step (Borisov et al. 1996).
Bedarev et al. (1998) have demonstrated that it is possible to predict relaminarization
in the separation regions for forward-facing steps and compression ramps through an
ad hoc modification of ω. These computations indicate the importance of modelling
this phenomenon for a better prediction of surface pressure, skin friction, and
heat transfer in the separation regions for this purpose. A comparison of RANS
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calculations with experimental data at M ∞ = 3 and a wide range of deflection angles
of β =8◦, 25◦, 45◦ and 90◦ was performed by Zheltovodov (1996) and Borisov et al.
(1999).

The mean velocity profiles for the separated region are plotted in figure 22. The
reverse velocity is normalized to its maximum value Umax; the wall-normal coordinate
is normalized by l1/2 where the mean velocity is half of its maximum value. In such
variables a turbulent near-wall jet has a universal profile indicated by the thick solid
line; the dashed line denotes a laminar profile (Vulis & Kashkarov 1965, p. 262).
The higher-Reynolds-number experimental data at sections 3, 4 and 5 are shown
in figure 22(a), and computational results at corresponding streamwise positions are
shown in figure 22(b). It can be seen that the experimental profiles are scattered around
laminar jet profile. The simulation exhibits a clear tendency of a transformation
from turbulent to laminar jet profiles. This agrees with the experimental finding of
Zheltovodov (1979) near a forward-facing 90◦ step.

Based on an analysis of mean-flow and turbulence measurements for a backward-
facing step, Adams & Johnston (1988) found that a process similar to an inverse
transition can also appear in subsonic turbulent separation. Following their suggestion
we show the evolution of mean-flow profiles scaled in outer units (figure 23a) and
in wall units (figure 23b). For reference, a U/Umax = (x3/δmax)

1/7 law and a log-law
U+

V D = ln x+
3 /0.4 + 5.1 are shown additionally, where the boundary-layer thickness

δmax here is defined as the wall-normal distance of the point of maximum reverse
velocity. An evolution away from the turbulent shape is evident.

The variation of maximum negative velocity in the reverse flow Umax is shown in
figure 24. From reattachment R to separation S the reverse flow accelerates strongly
due to the favourable (negative) pressure gradient up to the corner position. From
these data the acceleration parameter (ν/U 2

max)(dUmax/dx), which is commonly used to
assess the relaminarization conditions, can be estimated as between 10−4 and 4 × 10−4

which is in the same range as reported by Adams & Johnston (1988). It is two orders
of magnitude larger than the relaminarization limit of 3.0 × 10−6 (Adams &
Johnston 1988). This supports the possibility of relaminarization, which is also in
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agreement with the decrease of velocity fluctuations along the line of maximum
negative velocity, figure 24. After the corner the reverse flow slows down and the
near-wall-jet mean-velocity profile assumes a laminar shape. A slight increase of
velocity fluctuations can be attributed to its approaching the highly unsteady region
near separation S.
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5. Conclusions
A joint computational and experimental research effort has achieved a proper

quantitative comparison between computation and experiment for a 25◦-compression-
ramp flow at a free-stream Mach number of M ∞ = 2.95 and a Reynolds number of
Reδ0

= 63 560. A correct prediction of the mean flow properties and unsteady flow
phenomena was possible from a large-eddy simulation based on high-resolution
numerical discretizations and the ADM approach for subgrid-scale modelling.
In particular good agreement was achieved for surface-pressure and skin-friction
distributions, mean velocity profiles, mass-flow, density and velocity fluctuations and
wall-pressure-fluctuation distributions. It was possible to resolve the entire unsteady
behaviour of the shock system around the separation region. Along with high-
frequency fluctuations of the shock system a large-scale shock motion was confirmed
by the simulation. Aside from direct shock–turbulence interaction a mechanism
for turbulence amplification in the external flow above the detached shear layer
was proposed based on downstream-travelling shocklets. This explains the nature
of experimentally observed turbulence amplification and details its acoustic mode
downstream of a shock wave. The existence of streamwise Görtler-type vortices was
corroborated by simulation. The effect of these structures on the spanwise mean-flow
variation should be taken into account in validation effords of CFD methods based
on experimental data. Indications for a relaminarization tendency in the separation
region were found.

This research was funded by the German Research Council (DFG) through grant
AD 186/1. Computing time was granted by the German National Supercomputing
Center in Stuttgart (HLRS).
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